About the lab

Spin Quantum Computing Lab, led by Associate Professor Dawei Lu at the Southern University of Science and Technology (SUSTech), is at the forefront of advancing the field of quantum computing. Since its establishment in August 2017, our lab has been dedicated to realizing physical quantum computers using spins, specifically focusing on nuclear magnetic resonance (NMR) and nitrogen-vacancy (NV) centers in diamond. Our research encompasses a diverse array of quantum technologies, including quantum control, quantum simulation, quantum machine learning, quantum metrology, and quantum thermodynamics. By exploring these cutting-edge topics, we aim to unlock the full potential of quantum computing and revolutionize various fields of science and technology.

About Prof. Dawei Lu (鲁大为)

Dr. Dawei Lu is a tenured Associate Professor and Principal Investigator of the Spin Quantum Computing Lab in Department of Physics at SUSTech. Born in Tengzhou, Shandong Province in 1988, he spent 14 years immersed in the town’s rich environment. In 2003, he entered University of Science and Technology of China, where he earned the B.Sc. (2007) and Ph.D. (2012) degrees under the guidance of Prof. Jiangfeng Du. In 2012, he ventured to the Institute for Quantum Computing at the University of Waterloo, where he commenced his postdoctoral career under the mentorship of Prof. Raymond Laflamme.

In August 2017, Dr. Lu joined SUSTech as an Assistant Professor and was promoted to Associate Professor in May 2019. Dr. Lu’s research interests are primarily focused on experimental quantum computing utilizing spins. Notably, he holds the world record for controlling the largest number of qubits (12) using the NMR technology. He has published over 50 peer-reviewed papers, and has disseminated the research findings in more than 20 invited talks and lectures. He serves as an editorial board member for Frontiers of Physics, Chinese Physics Letters, Chineses Physics B, and Acta Physics Sinica.

Beyond academia, Dr. Lu finds solace in leisurely pursuits. During his spare time, he indulges in playing video games and delving into the captivating world of detective novels.

PEOPLE


Principal Investigator


Dawei Lu

Dawei Lu (鲁大为)


Associate Professor

Office: P5105, College of Science, SUSTech

Email: [email protected]

Full CV (English)Full CV (Chinese)Google Scholar

RAPs and Postdocs


Xinfang Nie

Xinfang Nie (聂新芳)


Research Assistant Professor

Graduate Students

Yu Tian

Yu Tian (田宇)


PhD Student (2019)

微信图片_20230531100150

Xinyue Long (龙新月)


PhD Student (2019)

微信图片_20201207210344

Hanyu Chen (陈瀚宇)


PhD Student (2020)

微信图片_20230531150123

Xi Chen (席成)


PhD Student (2021)

8e19c47107fa925f3ba8698336cec1b

Shitao Zhang (张世涛)

MSc Student (2021)

微信图片_20230529105011

Yuang Fan (樊宇昂)


MSc Student (2021)

微信图片_20230529105018

Keyi Huang (黄克毅)


MSc Student (2022)

Yuxuan Zheng (郑宇轩)


MSc Student (2023)

微信图片_20201207210510

Liangyu Che (车良宇)


PhD Student (2020)

微信图片_20201207212245

Xiangyu Wang (王翔宇)


PhD Student (2021)

72680D51-E85D-47E8-851B-4D23B4702C14_1_105_c

Hongfeng Liu (刘鸿枫)

PhD Student (2023)

微信图片_20230529105006

Yishan Li (李宜珊)


MSc Student (2021)

61701915013_.pic_hd

Yufang Feng (冯玉芳)


MSc Student (2023)

Secretary

微信图片_20230529104944

Manrong Chen (陈漫蓉)


Secretary

Alumni

RAPs, Postdocs and RAs

  • Dr. Xinfang Nie 聂新芳 (Postdoc, 2018-2020), now RAP at SUSTech
  • Dr. Amandeep Singh (Postdoc, 2019-2021), now postdoc at Hebrew University of Jerusalem
  • Kai Tang 汤开 (RA 2021), now PhD at SUSTech
  • Yu Tian 田宇 (RA 2019), now PhD at SUSTech
  • Shimin Zhang 张诗敏 (RA 2018), now PhD at University of California, Santa Cruz
  • Fan Zhu 朱凡 (RA 2018), now PhD at University of Surrey

Graduate Students

  • Zidong Lin 林子栋 (MSc 2022), now engineer at SpinQ Technologies
  • Chudan Qiu 邱楚丹 (MSc 2022), now RA at Institute of Semiconductors
  • Ze Zhang 张泽 (MSc 2021), now PhD at SUSTech

Undergraduate Students

  • Yingyao Zhou 周滢瑶 (Undergraduate 2022), now PhD at University of Illinois Chicago
  • Keyi Huang 黄克毅 (Undergraduate 2022), now MSc at SUSTech
  • Xuanran Zhu 朱炫然 (Undergraduate 2021), now PhD at HKUST
  • Cheng Xi 席成 (Undergraduate 2021), now joint PhD at CityU & SUSTech
  • Yu-ang Fan 樊宇昂 (Undergraduate 2021), now MSc at SUSTech
  • Yishan Li 李宜珊 (Undergraduate 2021), now MSc at SUSTech
  • Hanyu Chen 陈瀚宇 (Undergraduate 2020), now joint PhD at HKUST & SUSTech
  • Xiangyu Wang 王翔宇 (Undergraduate 2020), now PhD at SUSTech
  • Nayun Jia 贾拿云 (Undergraduate 2019), now MSc at SUSTech

RESEARCH

2078761_635283186131345000-1

Nuclear Magnetic Resonance (NMR)

Among the various physical quantum computing platforms, nuclear magnetic resonance (NMR) has long decoherence time and the unrivalled degree control technology.

images

Quantum Control

We shall develop the general quantum control methods, and seek their practical applications to various quantum information processing experimental platforms.
diamond-laser-web-74476223-iStock

NV Centers in Diamond

We pay attention to robust control in NV system, such like optimal control theory, geometric quantum control and control with dynamic decoupling.

quantum-tech-web-598270685-Shutterstock_Dmitriy-Rybin

Quantum Simulation

In our laboratory, we focus on the quantum simulation of several areas: the condensed matter physics, topological matter, high-energy physics and quantum chemistry et al.

NEWS


null

https://doi.org/10.1103/PhysRevLett.132.020601

Our paper titled ``Demonstrating Path-Independent Anyonic Braiding on a Modular Superconducting Quantum Processor`` has been published in Phys. Rev. Lett. 132, 020601 (2024). This collaborative effort with the superconducting quantum computing group, led by Prof. Dapeng Yu, Prof. Youpeng Zhong, and Prof. Jingjing Niu, highlights the implementation of the toric code model on a modular superconducting quantum processor. By enabling in-parallel control across distinct modules, we accomplished the generation of a 10-qubit toric code ground state in four steps. Moreover, we successfully executed six different braiding paths to assess the performance of anyonic statistics. Through correlation measurements, we verified the path independence of anyonic braiding statistics in an efficient and scalable manner.
Heartfelt congratulations to Yishan Li for this remarkable achievement!

null

A wonderful day in Huizhou on November 29, 2020

null

Graduation event on July 1, 2023

null

Our group held a party in Shantou on December 3, 2023

null

Our group held a party in Shantou on December 3, 2023

null

Seminar

PUBLICATION


Refereed Papers

(*: equal contributions; †: corresponding author)

    2024

  1. J. J. Niu†, Y. S. Li, L. B. Zhang, J. J. Zhang, J. Chu, J. X. Huang, W. H. Huang, L. F. Nie, J. W. Qiu, X. D. Sun, Z. Y. Tao, W. W. W, J. W. Zhang, Y. X. Zhou, Y. Z. Chen, L. H, Y. L, S. L, Y. P. Zhong†, D. W. Lu†, and D. P. Yu, Demonstrating Path-Independent Anyonic Braiding on a Modular Superconducting Quantum Processor, Phys. Rev. Lett 132, 020601 (2024).
  2. 2023

  3. Y. A. Fan, Y. C. Li, Y. T. Hu, Y. S. Li, X. Y. Long, H. F. Liu, X. D. Yang, X. F. Nie, J. Li, T. Xin, D. W. Lu†, and Y. D. Wan†, Experimental quantum simulation of a topologically protected Hadamard gate via braiding Fibonacci anyons, The Innovation 4, 110480 (2023).
  4. H. F. Liu, X. D. Yang†, K. Tang, L. Y. Che, X. F. Nie, T. Xin, J. Li, D. W. Lu†, Practical quantum simulation of small-scale non-Hermitian dynamics, Phys. Rev. A 107, 062608 (2023).
  5. X. Lin, J. W. Fan, R. C. Ye, M. T. Zhou, Y. M. Song, D. W. Lu†, and N. Y. Xu†, Online Optimization for Optical Readout of a Single Electron Spin in Diamond, Front. Phys. 18, 21301 (2023).
  6. Y. Zhai, X. D. Yang†, K. Tang, X. Y. Long, X. F. Nie, T. Xin, D. W. Lu, and J. Li†, Control-Enhanced Quantum Metrology Under Markovian Noise, Phys. Rev. A 107, 022602 (2023).
  7. B. Cheng, X. H. Deng, X. Gu, Y. He, G. C. Hu, P. H. Huang, J. Li, B. C. Lin, D. W. Lu, Y. Lu, C. D. Qiu, H. Wang, T. Xin, S. Yu, M. H. Yung, J. K. Zeng, S. Zhang, Y. P. Zhong, X. H. Peng, F. Nori, and D. P. Yu†, Noisy Intermediate-Scale Quantum Computers (Review), Front. Phys. 18, 21308 (2023).
  8. 2022

  9. X. F. Nie*, X. R. Zhu*, K. Y. Huang, K. Tang, X. Y. Long, Z. D. Lin, Y. Tian, C. D. Qiu, C. Xi, X. D. Yang, J. Li, Y. Dong†, T. Xin†, and D. W. Lu†, Experimental Realization of a Quantum Refrigerator Driven by Indefinite Causal Orders, Phys. Rev. Lett. 129, 100603 (2022). arXiv
  10. X. Y. Long*, W. T. He*, N. N. Zhang*, K. Tang, Z. D. Lin, H. F. Liu, X. F. Nie, G. R. Feng, J. Li, T. Xin, Q. Ai†, and D. W. Lu†, Entanglement-Enhanced Quantum Metrology in Colored Noise by Quantum Zeno Effect, Phys. Rev. Lett. 129, 070502 (2022). arXiv
  11. X. D. Yang, X. F. Nie, Y. L. Ji, T. Xin, D. W. Lu, and J. Li, Improved Quantum Computing with Higher-Order Trotter Decomposition, Phys. Rev. A 106, 042401 (2022).
  12. F. F. Zhou, Y. Tian, Y. M. Song, C. D. Qiu, X. Y. Wang, M. T. Zhou, N. Y. Xu, and D. W. Lu, Preserving Entanglement in a Solid-Spin System Using Quantum Autoencoders, Appl. Phys. Lett. 121, 134001 (2022). arXiv
  13. Y. Tian, L. Y. Che, X. Y. Long, C. L. Ren, and D. W. Lu, Machine Learning Experimental Multipartite Entanglement Structure, Adv. Quantum Technol., 2200025 (2022).
  14. S. Z. Xue*, Y. L. Huang*, D. F. Zhao, C. Wei, J. Li, Y. Dong, J. C. Gao, D. W. Lu, T. Xin, and G. L. Long, Experimental Measurement of Bipartite Entanglement using Parameterized Quantum Circuits, Sci. China Phys. Mech. Astron. 65, 280312 (2022).
  15. Z. D. Lin*, L. Zhang*, X. Y. Long*, Y. A. Fan, Y. S. Li, K. Tang, J. Li, X. F. Nie, T. Xin, X. J. Liu, and D. W. Lu, Experimental Quantum Simulation of Non-Hermitian Dynamical Topological States using Stochastic Schrödinger Equation, npj Quantum Inf. 8, 77 (2022).
  16. X. Y. Wang, Z. D. Lin, L. Y. Che, H. Y. Chen, and D. W. Lu, Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems, Adv. Quantum Technol., 2200005 (2022).
  17. Z. Zhang*, X. Y. Long*, X. Z. Zhao, Z. D. Lin, K. Tang, H. F. Liu, X. D. Yang, X. F. Nie, J. S. Wu, J. Li, T. Xin†, K. R. Li†, and D.W. Lu†, Identifying Abelian and Non-Abelian Topological Orders in the String-Net Model using a Quantum Scattering Circuit, Phys. Rev. A (Letter) 105, L030402 (2022).
  18. Y. C. Li*, T. Xin*, C. D. Qiu, K. R. Li, G. Q. Liu, J. Li, Y. D. Wan†, and D.W. Lu†, Dynamical-Invariantbased Holonomic Quantum Gates: Theory and Experiment, Fundamental Research, in press (2022). arXiv.
  19. 2021

  20. T. Xin*, L. Y. Che*, C. Xi, A. Singh, X. F. Nie, J. Li†, Y. Dong†, and D.W. Lu†, Experimental Quantum Principal Component Analysis via Parametrized Quantum Circuits, Phys. Rev. Lett. 126, 110502 (2021).
  21. L. Y. Che*, C. Wei*, Y. L. Huang, D. F. Zhao, S. Z. Xue, X. F. Nie, J. Li†, D.W. Lu†, and T. Xin†, Learning quantum Hamiltonians from single-qubit measurements, Phys. Rev. Research 3, 023246 (2021).
  22. D. F. Zhao*, C. Wei*, S. Z. Xue, Y. L. Huang, X. F. Nie, J. Li, D. Ruan, D.W. Lu†, T. Xin†, and G. L. Long, Characterizing quantum simulations with quantum tomography on a spin quantum simulator, Phys. Rev. A 103, 052403 (2021).
  23. D. F. Zhao, S. Z. Xue, D. Ruan, J. Li, D.W. Lu, W. Huang, T. Xin, H. Li†, X. F. Nie†, and G. L. Long, Experimental observation of a quadrupolar phase via quench dynamics on a spin simulator, Phys. Rev. A 104, 062615 (2021).
  24. C. D. Qiu, X .F. Nie†, and D.W. Lu†, Quantum simulations with nuclear magnetic resonance system (Invited Review), Chin. Phys. B 30, 048201 (2021).
  25. Y. Tian, Z. D. Lin, X. Y. Wang, L. Y. Che, and D.W. Lu†, Experimental progress of quantum machine learning based on spin systems (Invited Review, in Chinese), Acta. Phys. Sin. 70, 140305 (2021).
  26. S. Y. Hou, G. R. Feng, Z. P. Wu, H. Y. Zou, W. Shi, J. F. Zeng, C. F. Cao, S. Yu, Z. K. Sheng, X. Rao, B. Ren, D.W. Lu, J. T. Zou, G. X. Miao†, J. G. Xiang†, and B. Zeng†, SpinQ Gemini: a desktop quantum computing platform for education and research, EPJ Quantum Technol. 8, 1 (2021). arXiv.
  27. 2020

  28. T. Xin*, Y. S. Li*, Y. A. Fan, X. R. Zhu, Y. J. Zhang, X. F. Nie, J. Li†, Q. H. Liu†, and D.W. Lu†, Quantum Phases of Three-Dimensional Chiral Topological Insulators on a Spin Quantum Simulator, Phys. Rev. Lett. 125, 090502 (2020). arXiv
  29. X. F. Nie*, B. B. Wei*, X. Chen, Z. Zhang, X. Z. Zhao, C. D. Qiu, Y. Tian, Y. L. Ji, X. Tao†, D.W. Lu†, and J. Li†, Experimental Observation of Equilibrium and Dynamical Quantum Phase Transitions via Out-of-Time-Ordered Correlators, Phys. Rev. Lett. 124, 250601 (2020). arXiv
  30. H. Y. Wang, S. J. Wei, C. Zheng, X. Y. Kong, J. W. Wen, X. F. Nie, J. Li, D.W. Lu, and T. Xin†, Experimental simulation of the four-dimensional Yang-Baxter equation on a spin quantum simulator, Phys. Rev. A. 102, 012610 (2020).
  31. Y. M. Song*, Y. Tian*, Z. Y. Hu, F. F. Zhou, T. T. Xing, D.W. Lu, B. Chen†, Y. Wang, N. Y. Xu†, and J. F. Du†, Pulse-width-induced polarization enhancement of optically-pumped N-V electron spin in diamond, Photonics Research 8, 1289 (2020). arXiv
  32. T. Xin, X. F. Nie, X. Y. Kong, D.W. Lu†, and J. Li†, Quantum state tomography via a variational hybrid quantum-classical method, Phys. Rev. Applied 13, 024013 (2020). arXiv
  33. T. Xin, S. J. Wei, J. L. Cui, J. X. Xiao, I. Arrazola, L. Lamata, X. Y. Kong, D.W. Lu†, E. Solano, and G. L. Long†, Quantum algorithm for solving linear differential equations: Theory and experiment, Phys. Rev. A 101, 032307 (2020). arXiv
  34. 2019

  35. T. Xin, S. R. Lu, N. P. Cao, G. Anikeeva, D.W. Lu, J. Li†, G. L. Long, and B. Zeng†, Local-measurementbased quantum state tomography via neural networks, accepted by npj Quantum Information (2019). arXiv.
  36. Y. Wang, W. T. Ji, Z. H. Chai, Y. H. Guo, M. Q. Wang, X. Y. Ye, P. Yu, L. Zhang, X. Qin, P. F. Wang, F. Z. Shi, X. Rong, D.W. Lu†, X. J. Liuy, and J. F. Du†, Experimental observation of dynamical bulk-surface correspondence for topological phases, accepted by Phys. Rev. A (2019). arXiv
  37. K. R. Li, Y. N. Li, M. X. Han, S. R. Lu, J. Zhou, D. Ruan, G. L. Long, Y. D. Wan†, D.W. Lu†, B. Zeng†, and R. Laflamme, Quantum Spacetime on a Quantum Simulator, Communications Physics 2, 122 (2019). arXiv
  38. J. Li†, Z. H. Luo, T. Xin, H. Y. Wang, D. Kribs, D. W. Lu†, B. Zeng†, and R. Laflamme, Experimental Im- plementation of Efficient Quantum Pseudorandomness on a 12-spin System, Phys. Rev. Lett. 123, 030502 (2019). arXiv
  39. W. Q. Zheng, H. Y. Wang, T. Xin, X. F. Nie†, D. W. Lu†, and J. Li†, Optimal Bounds on State Transfer Under Quantum Channels with Application to Spin System Engineering, Phys. Rev. A 100, 022313 (2019). arXiv
  40. Z. H. Luo, Y. Z. You, J. Li, C. M. Jian, D. W. Lu†, C. K. Xu, B. Zeng†, and R. Laflamme, Observing Fermion Pair Instability of the Sachdev-Ye-Kitaev Model on a Quantum Spin Simulator, npj Quantum Informa-
    tion
    5
    , 7 (2019). arXiv.
  41. K. R. Li∗, M. X. Han∗, D. X. Qu, Z. C. Huang, G. L. Long, Y. D. Wan†, D.W.Lu†, B. Zeng, and R. Laflamme, Measuring Holographic Entanglement Entropy on a Quantum Simulator, npj Quantum Information 5, 30 (2019). arXiv.
  42. 2018

  43. G. R. Feng, F. Cho, H. Katiyar, J. Li, D. W. Lu, J. Baugh†, and R. Laflamme†, Closed-Loop Quantum Opti- mal Control in a Solid-State Two-Qubit System, Phys. Rev. A 98, 052341 (2018). arXiv.
  44. S. R. Lu∗, S. L. Huang∗, K. R. Li, J. Li†, J. X. Chen, D.W.Lu†, Z. F. Ji, Y. Shen, D. L. Zhou, and B. Zeng, A Separability-Entanglement Classifier via Machine Learning, Phys. Rev. A 98, 012315 (2018). arXiv.
  45. D. W. Lu†, Speeding up the “quantum” mountain climb, Front. Phys. 13, 130313 (2018).
  46. T. Xin, S. L. Huang, S. R. Lu, K. R. Li, Z. H. Luo, Z. Q. Yin, J. Li†, D.W.Lu†, G. L. Long†, B. Zeng, NM- RCloudQ: A Quantum Cloud Experience on a Nuclear Magnetic Resonance Quantum Computer, Sci. Bull. 63, 17 (2018). arXiv.
  47. 2017

  48. D. W. Lu∗†, K. R. Li∗, J. Li∗, H. Katiyar, A. J. Park, G. R. Feng, T. Xin, H. Li, G. L. Long, A. Brodutch, J. Baugh, B. Zeng†, and R. Laflamme, Enhancing quantum control by bootstrapping a quantum processor of 12 qubits, npj Quantum Information 3, 45 (2017). arXiv.
  49. J. Li†, S. L. Huang†, Z. H. Luo, K. R. Li, D. W. Lu, and B. Zeng†, Optimal design of measurement settings for quantum-state-tomography experiments, Phys. Rev. A 96, 032307 (2017). arXiv.
  50. K. R. Li, Y. D. Wan, L. Y. Hung, T. Lan, G. L. Long, D. W. Lu†, B. Zeng, and R. Laflamme, Experimen- tal Identification of Non-Abelian Topological Orders on a Quantum Simulator, Phys. Rev. Lett. 118, 080502 (2017). arXiv
  51. K. R. Li, G. F. Long, H. Katiyar, T. Xin, G. R. Feng, D. W. Lu†, and R. Laflamme, Experimentally superpos- ing two pure states with partial prior knowledge, Phys. Rev. A 95, 022334 (2017). arXiv
  52. H. Katiyar†, A. Brodutch†, D. W. Lu†, and R. Laflamme†, Experimental violation of the LeggettĺCGarg in- equality in a three-level system, New J. Phys. 19, 023033 (2017). arXiv
  53. T. Xin∗, D. W. Lu∗, J. Klassen∗, N. K. Yu†, Z. F. Ji, J. X. Chen, X. Ma, G. L. Long, B. Zeng†, and R. Laflamme, Quantum state tomography via reduced density matrices, Phys. Rev. Lett. 118, 020401 (2017). arXiv
  54. Before 2017

  55. G. R. Feng, B. Buonacorsi, J. J. Wallman, F. H. Cho, D. Park, T. Xin, D. W. Lu, J. Baugh, and R. Laflamme, Estimating the coherence of noise in quantum control of a solid-state qubit, Phys. Rev. Lett. 117, 260501 (2016). arXiv
  56. X. Rong, D. W. Lu, X. Kong, J. P. Geng, Y. Wang, F. Z. Shi, C. K. Duan, and J. F. Du†, Harnessing the pow- er of quantum systems based on spin magnetic resonance: from ensembles to single particles, invited review article, Advances in Physics: X 2, 125 (2016).
  57. H. Y. Wang, W. Q. Zheng, N. K. Yu, K. R. Li, D.W.Lu, T. Xin, C. Li, Z. F. Ji, D. Kribs, B. Zeng†, X. H. Peng†, and J. F. Du, Quantum state and process tomography via adaptive measurements, Sci. China Phys. Mech. Astron. 59, 100313 (2016). arXiv
  58. J. Li, D. W. Lu, Z. H. Luo, R. Laflamme, X. H. Peng†, and J. F. Du†, Approximation of reachable set for co- herently controlled open quantum systems: application to quantum state engineering, Phys. Rev. A 94, 012312 (2016). arXiv
  59. D. W. Lu∗, T. Xin∗, N. K. Yu∗, Z. F. Ji, J. X. Chen, G. L. Long, J. Baugh, X. H. Peng, B. Zeng†, and R. Laflamme, Tomography is necessary for universal entanglement detection with single-copy observables, Phys. Rev. Lett. 116, 230501 (2016). arXiv
  60. A. J. Park†, E. McKay, D. W. Lu†, and R. Laflamme, Simulation of anyonic statistics and its topological path independence using a 7-qubit quantum simulator, New J. Phys. 18, 043043 (2016). arXiv
  61. D. W. Lu†, J. Biamonte, J. Li, H. Li, T. Johnson, V. Bergholm, M. Faccin, Z. Zimbora ́s, R. Laflamme, J. Baugh, and S. Lloyd, Chiral quantum walks, Phys. Rev. A 93, 042302 (2016). arXiv
  62. X. Ma, T. Jackson, H. Zhou, J. X. Chen, D. W. Lu, M. D. Mazurek, K. A. G. Fisher, X. H. Peng, D. Kribs, K. J. Resch, Z. F. Ji, B. Zeng†, and R. Laflamme, Pure-state tomography with the expectation value of Pauli operators, Phys. Rev. A 93, 032140 (2016). arXiv
  63. D. W. Lu, H. Li, D. Trottier, J. Li, A. Brodutch, A. P. Krismanich, A. Ghavami, G. I. Dmitrienko, G. Long, J. Baugh, and R. Laflamme†, Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quan- tum processor, Phys. Rev. Lett. 114, 140505 (2015). arXiv
  64. Z. K. Li, H. Zhou, C. Y. Ju, H. W. Chen, W. Q. Zheng, D.W.Lu, X. Rong, C. K. Duan, X. H. Peng†, and J. F. Du†, Experimental realization of a compressed quantum simulation of a 32-spin Ising chain, Phys. Rev. Lett. 112, 220501 (2014).
  65. D. W. Lu, A. Brodutch†, J. Li, H. Li, and R. Laflamme†, Experimental realization of post-selected weak mea- surements on an NMR quantum processor, New J. Phys. 16, 053015 (2014). arXiv
  66. D.W.Lu, B. R. Xu, N. Y. Xu, Z. K. Li, H. W. Chen, X. H. Peng, R. X. Xu, and J. F. Du†, Quantumchem- istry simulation on quantum computers: theories and experiments, Phys. Chem. Chem. Phys. Perspective 14, 9411 (2012).
  67. D.W.Lu, N. Y. Xu, B. R. Xu, Z. K. Li, H. W. Chen, X. H. Peng, R. X. Xu, and J. F. Du†, Experimentals- tudy of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator, Phil. Trans. R. Soc. A 370, 4734 (2012).
  68. N. Y. Xu, J. Zhu, D. W. Lu, X. Y. Zhou, X. H. Peng†, and J. F. Du†, Quantum factorization of 143 on a dipolar-coupling NMR system, Phys. Rev. Lett. 108, 130501 (2012). arXiv
  69. Z. K. Li∗, M. H. Yung∗, H. W. Chen, D. W. Lu, J. D. Whitfield, X. H. Peng, A. Aspuru-Guzik, and J. F. Du†, Solving quantum ground-state problems with nuclear magnetic resonance, Sci. Rep. 1, 88 (2011). arXiv
  70. D. W. Lu, N. Y. Xu, R. X. Xu, H. W. Chen, J. B. Gong, X. H. Peng, and J. F. Du†, Simulation of chemical isomerization reaction dynamics on a NMR quantum simulator, Phys. Rev. Lett. 107, 020501 (2011). arXiv
  71. H. W. Chen, D. W. Lu, B. Chong, G. Qin, X. Y. Zhou, X. H. Peng†, and J. F. Du†, Experimental demonstra- tion of probabilistic quantum cloning, Phys. Rev. Lett. 106, 180404 (2011). arXiv
  72. D. W. Lu, J. Zhu, P. Zhou, X. H. Peng, Y. H. Yu, S. M. Zhang, Q. Chen, and J. F. Du†, Experimental imple- mentation of a quantum random-walk search algorithm using strongly dipolar coupled spins, Phys. Rev. A 81, 022308 (2010).
  73. J. F. Du†, N. Y. Xu, X. H. Peng, P. F. Wang, S. F. Wu, and D. W. Lu, NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation, Phys. Rev. Lett. 104, 030502 (2010). arXiv
  74. C. L. Ren, D. W. Lu, X. H. Peng, M. J. Shi, and J. F. Du†, Experimentally simulating the violation of Bell-type inequalities for generalized GHZ states, Phys. Lett. A 373, 46, 4222-4226 (2009).